Mapping Outburst Floods Using a Collaborative Learning Method Based on Temporally Dense Optical and SAR Data: A Case Study with the Baige Landslide Dam on the Jinsha River, Tibet
نویسندگان
چکیده
Outburst floods resulting from giant landslide dams can cause devastating damage to hundreds or thousands of kilometres a river. Accurate and timely delineation flood inundated areas is essential for disaster assessment mitigation. There have been significant advances in mapping using remote sensing images recent years, but little attention has devoted outburst mapping. The short-duration nature these events observation constraints cloud cover significantly challenged This study used the Baige dam on Jinsha River 3 November 2018 as an example propose new method that combines optical Sentinel-2, synthetic aperture radar (SAR) Sentinel-1 Digital Elevation Model (DEM). First, cloud-free region, comparison four spectral indexes calculated time series Sentinel-2 indicated normalized difference vegetation index (NDVI) with threshold 0.15 provided best separation flooded area. Subsequently, cloud-covered analysis dual-polarization RGB false color composites backscattering coefficient differences SAR data were found apparent response ground roughness’s changes caused by flood. We carried out range prediction model based random forest algorithm. Training samples consisted 13 feature vectors obtained Hue-Saturation-Value space, differences/ratio, DEM data, label set prepared images. Finally, field investigation confusion matrix tested accuracy end-of-flood map. overall Kappa 92.3%, 0.89 respectively. full extent was successfully within five days its occurrence. multi-source merging framework massive sample preparation proposed this paper, provide practical demonstration similar machine learning applications sensing.
منابع مشابه
a study on insurer solvency by panel data model: the case of iranian insurance market
the aim of this thesis is an approach for assessing insurer’s solvency for iranian insurance companies. we use of economic data with both time series and cross-sectional variation, thus by using the panel data model will survey the insurer solvency.
the effect of consciousness raising (c-r) on the reduction of translational errors: a case study
در دوره های آموزش ترجمه استادان بیشتر سعی دارند دانشجویان را با انواع متون آشنا سازند، درحالی که کمتر به خطاهای مکرر آنان در متن ترجمه شده می پردازند. اهمیت تحقیق حاضر مبنی بر ارتکاب مکرر خطاهای ترجمانی حتی بعد از گذراندن دوره های تخصصی ترجمه از سوی دانشجویان است. هدف از آن تاکید بر خطاهای رایج میان دانشجویان مترجمی و کاهش این خطاها با افزایش آگاهی و هوشیاری دانشجویان از بروز آنها است.از آنجا ک...
15 صفحه اولa study on construction of iranian life tables: the case study of modified brass logit system
چکیده ندارد.
15 صفحه اولthe effects of multiple intelligences (focus on musical, visual, and linguistic) and direct instruction on learning grammar: a case on iranian efl students at elementary level
1.0 overview it seems that grammar plays a crucial role in the area of second and foreign language learning and widely has been acknowledged in grammar research. in other words, teaching grammar is an issue which has attracted much attention to itself, and a lot of teachers argue about the existence of grammar in language teaching and learning. this issue will remind us a famous sentence f...
a case study of the two translators of the holy quran: tahereh saffarzadeh and laleh bakhtiar
بطورکلی، کتاب های مقدسی همچون قران کریم را خوانندگان میتوان مطابق با پیش زمینه های مختلفی که درند درک کنند. محقق تلاش کرده نقش پیش زمینه اجتماعی-فرهنگی را روی ایدئولوژی های مترجمین زن و در نتیجه تاثیراتش را روی خواندن و ترجمه آیات قرآن کریم بررسی کند و ببیند که آیا تفاوت های واژگانی عمده ای میان این مترجمین وجود دارد یا نه. به این منظور، ترجمه 24 آیه از آیات قرآن کریم مورد بررسی مقایسه ای قرار ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Remote Sensing
سال: 2021
ISSN: ['2315-4632', '2315-4675']
DOI: https://doi.org/10.3390/rs13112205